The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries
نویسندگان
چکیده
We show how a number of NP-complete as well as NP-hard problems can be reduced to the Sturm-Liouville eigenvalue problem in the quantum setting with queries. We consider power queries which are derived from the propagator of a system evolving with a Hamiltonian obtained from the discretization of the Sturm-Liouville operator. We use results of our earlier paper concering the complexity of the Sturm-Liouville eigenvalue problem. We show that the number of power queries as well the number of qubits needed to solve the problems studied in this paper is a low degree polynomial. The implementation of power queries by a polynomial number of elementary quantum gates is an open issue. If this problem is solved positively for the power queries used for the Sturm-Liouville eigenvalue problem then a quantum computer would be a very powerful computation device allowing us to solve NP-complete problems in polynomial time. PACS numbers: 03.67.Lx, 02.60.-x
منابع مشابه
Classical and Quantum Complexity of the Sturm-Liouville Eigenvalue Problem
We study the approximation of the smallest eigenvalue of a Sturm-Liouville problem in the classical and quantum settings. We consider a univariate Sturm-Liouville eigenvalue problem with a nonnegative function q from the class C2([0, 1]) and study the minimal number n(ε) of function evaluations or queries that are necessary to compute an ε-approximation of the smallest eigenvalue. We prove that...
متن کاملSturm-Liouville Fuzzy Problem with Fuzzy Eigenvalue Parameter
This study is on the fuzzy eigenvalues and fuzzy eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. We find fuzzy eigenvalues and fuzzy eigenfunctions of the problem under the approach of Hukuhara differentiability. We solve an example. We draw the graphics of eigenfunctions. We show that eigenfunctions are valid fuzzy functions or not.
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملMatrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کاملInfinite product representation of solution of indefinite SturmLiouville problem
In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information Processing
دوره 6 شماره
صفحات -
تاریخ انتشار 2007